Sem/edx services in Chelmsford today

Xrf analysis laboratories by MicroVision Laboratories, Inc. today? Approach: MicroVision Labs’ staff consulted with the client, and determined that, unfortunately, there could be a number of potential sources of a white material. Even before the bottle with the suspended material arrived, it was determined that there was less than 50 mL of water remaining, and likely less than a gram of material suspended in the water. The client was aware that this material could represent precipitated minerals from the source water, a polymer residue from the bottles, some form of biological tissue that might have formed despite sterilization procedures, or could very well represent some completely unforeseen foreign material. The issue facing the client is how to have the material tested, as most tests that they might request for one or the other of these known potential sources would destroy or alter the sample. Choosing a test was therefore something of a gamble, because if they tested for calcium (mineral precipitate) and it came up negative – that didn’t actually tell them what the powder was, just that it didn’t have any calcium. Based on this conversation, the non-destructive, specialized testing at MicroVision Laboratories was chosen as the best choice.

Energy Dispersive X-Ray Spectroscopy (EDS): While in a Scanning Electron Microscope (SEM), samples are exposed to high energy electrons in a vacuum, which generates X-rays through secondary electron transitions. Variations in electron configuration specific to each element generate different energy electrons, and thus different signature energy peaks, indicating which elements are present in the sample. Analysis is performed only on areas which are exposed to the electron beam, facilitating precise control of the analyzed area. This means the composition of very small areas or particles in a sample can be taken. Since EDS is performed in the SEM chamber, a quick and easy interrogation of the surface materials as viewed on the SEM is possible. This can be expanded to include the entire sample, please see our Elemental Mapping page. Additionally, relative amount of the elements present can be calculated, generating composition percentages.

Have you always been located in Chelmsford, MA? No, for the first four years MicroVision Labs operated at 15 A Street, Burlington, MA. In 2007 we moved to our present location in Chelmsford, MA. What business designation does MicroVision Labs have? MicroVision Labs is designated as a veteran owned small business. How many staff members does MicroVision Labs have? MicroVision Labs is a small business employing 5-10 full-time, part-time, and contract employees. Find a few more info on microvision laboratories. MicroVision Laboratories, Inc. has been providing businesses, consultants and other testing laboratories with expert microscopy and analytical services since 2003. Our client base covers a broad spectrum of industries including semi-conductors, aerospace, electronics, biomedical, ceramics, optics, pharmaceuticals, mineralogy, metallurgy, thin films, environmental, membranes filtration and industrial hygiene.

The data indicated that a significant portion of the dust was from the insulation in the attic. The contractor had replaced a portion of duct work running to the master bedroom. During this replacement, fiberglass insulation was knocked into the ducting. The small glass insulation fibers were spread through the AC ducts and settling out of the air throughout the house. The client was relieved to know what was causing their skin irritation and the significant dust build up. Using the results garnered from the analysis from MicroVision Labs they were able to have the contractor clean out the duct work and act to prevent further spread of the insulation fibers and properly clean up the settled dust in the house that was the cause of the homeowner’s skin irritation.

Close examination of any possible defects or voids was undertaken at higher magnification. The voids did not appear to create any structural or conductivity issues. Additionally, the formation and contiguity of intermetallic bonds between the contacts and solder were shown using a combination of EDS line scan elemental spectroscopy and elemental mapping. The SEM image and the EDS map to the left show the intermetallic layer between the copper wire and the tin/lead solder via the mixture of the red copper and the blue tin. Find a few extra details at here.