Eds testing laboratories in US in 2021? Conclusion: Based on the analytical report, the client was able to demonstrate that the particles were consistent with a common aspirin tablet. When the end customer was approached with this report, they remembered that their spouse had taken an aspirin earlier that morning, and had likely used the bottle of water in question to do so. Based on this, the customer was happy, the manufacturing client was satisfied, and the sample was maintained – undestroyed should someone need to examine the sample again or do any more esoteric testing. For an affordable price, the client was able to get piece of mind, and gather information from a very wide range of testing methods quickly and accurately.
Translucent or transparent coatings on metallic or semi-conductor substrates are very difficult to image due to their reflective nature. Nomarski/DIC imaging is an effective method for accentuating differences in thickness, density or the optical index in these cases. This analysis enhances and highlights subtle features with brilliant color gradients and captures them with a high resolution digital imaging system. Let us bring out your sample’s hidden features.
Do you give lab tours? Yes, we routinely give lab tours to our clients and potential clients. Please call and we would be happy to schedule a tour for you and your co-workers. Do you have other locations around the country? We do work for companies all across the United States, with one laboratory which is located in Chelmsford, Massachusetts. Did MicroVision Labs ever operate under a different company name? No, we have always been MicroVision Laboratories, Inc. Our founder, John Knowles, used to work for another laboratory that underwent several name changes (Eastern Analytical Laboratories, Industrial Environmental Analysts, American Environmental Network, Severn Trent Laboratories, and EMLab P&K Billeria) and was located nearby in Billerica. When that laboratory was closed in 2008, John hired a few of the remaining analysts and acquired its equipment, client list and phone number. Find a few extra details on microvision.com. We partner with companies in all phases of product development and sales, including R&D, manufacturing, QC, advertising and failure analysis. Our laboratory offers a highly-trained and experienced staff utilizing a powerful set of analytical tools (SEM with EDS and backscatter detectors, Bruker X-Flash elemental mapping, X-Ray imaging, Micro-FTIR spectroscopy, Micro-XRF, light microscopy, cross sectioning/precision polishing and microhardness testing).
Examining the sample with a polarized light microscope (PLM), it was darker and coarser than expected for a mold sample. The dust appeared to be a closed cell, synthetic blown foam material, and all from the same source. The black color was likely due to pigment particles added to color the foam. Fourier Transform Infra-Red spectroscopy was performed on the foam particles. The spectrum showed a mixture of spectral features, associated with vinyl acetates, polyurethane, and cellulose or other sugar-like polymers. Based on these features, a common urethane acetate foam was determined as the likely source material.
The profile of the flow of the solder at these bonds was documented using the SEM with backscatter imaging, which correlates brightness in the image with atomic density. Some voids were found in the solder as shown the SEM image. An EDS spectrum of the solder was acquired which showed that the solder was a tin/lead (80/20) solder. The EDS map clearly shows the copper wire and copper pad (red) with the tin lead solder (light blue) that appears to have flowed well and made a good bond between the copper elements. This map also shows the fiberglass bundles that add structural integrity to the board. Read a few extra details on https://microvisionlabs.com/.